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Introduction
Type systems are crucial tools in the hands of develop-
ers. The compilers’ type checking is the first line of de-
fence against programmer error. Unfortunately, develop-
ers often not use type systems to their capacity. This is
most prevalent with trivial values expressed by fundamen-
tal (e.g. int) or library (e.g. string) types. Developers
often resort to embedding the meaning of a variable’s ex-
pressed value in its name [1] and not its type. Perhaps the
most widely-known example of such weak interfaces is the
Mars Climate Orbiter incident [2]. Due to a design misun-
derstanding, some program modules used different units
of measurement conceptually while only communicating in
terms of “numbers”, which resulted in the incident. Com-
pilers can catch such mistakes, but only if the program
uses types more elaborate than double.
Type migration is the process of changing the types of
program elements. Conventionally, one would design the
new types in advance, specify a mapping from old types
to the new ones, and perform the migration. If some op-
erations are left undefined, the code does not compile,
making the code incomprehensible to developer tools.
Instead, we propose an approach which combines code
comprehension and type migration into the same process.
By utilising the type system of an existing language but
in an orthogonal plane, we are able to interactively walk
the developer through the discovery of how a newly intro-
duced type should look like.

Fictive Types
Our approach uses the fictive types (“ft”) annotation
technique to embed additional information about program
elements into the source code. The highlight of anno-
tations is that compiler and tool vendors are allowed to
specify their own set. Tools are encouraged to ignore
– maybe with an accompanying warning – annotations
they do not understand. The following example shows
a local variable whose “real” type is int and fictive type
temperature. Existing compilers and tools interact with
the real type only, and the project can be continually re-
leased, while tools more aware interact with the fictive
type. Fictive types express only the “set membership” re-
lation – “SensorTemp is-a temperature”.

[[ft(temperature)]] int SensorTemp;

I(n)tera(c)tive refactoring process
The refactoring consists of three steps. The propagations
step are executed in a saturating fix-point iteration, where
the developer is asked on-demand to provide additional in-
put.

Taint seeding
Consider the previous example wherein the developer de-
cided some variable is-a “temperature”. This variable is
passed to a function somewhere, and that function re-
turns triple the value, and this is emitted to some output.

int threshold(int T) { return 3 * T; }
int T2 = threshold(SensorTemp);
write(T2);

Code analysis and transformation is executed on the ab-

stract syntax tree (AST). A simplified AST for the previ-
ous example – with the type colouring – is shown below.

fn threshold

param T

return

*

3 T

var ST var T2

init

call threshold

arg = ST

Propagation
The propagation is executed via a modified compiler built
upon the LLVM Compiler Infrastructure’s Clang project. It
is a monotonic operation where more program elements re-
ceive a taint. In Round 1, the propagation tool discovers
that the fictively typed variable is passed to the function
parameter – a trivial propagation via assignment. This
turns threshold into a function taking “temperature”.
As each round is as expansive as possible, the type expres-
sion <?> * temperature is investigated, where a recov-
erable error is generated for the undefined operation.

test.cpp:1:32: warning: use of undefined fictive
operator '<?> * temperature'

3 * T;
~ ^

test.cpp:1:30: note: left operand is 'int' literal,
configure overload or refactor into variable

Errors are recoverable by the developer changing the pa-
rameters of the environment, which in practice is done via
an interactive configuration file. If the developer, for ex-
ample, decides to define 3 to be of fictive type factor,
and that factor * temperature is temperature, the
code is transformed, and the next round begins.

int threshold([[ft(temperature)]] int T) {
[[ft(factor)]] int F = 3;
return F * T;

}
int T2 = threshold(SensorTemp);
write(T2);

Round 2 associates the result of the * operation with
the return value of the function, and the assignment of
the function’s result to the local variable results in taint-
ing the local variable. The user at this point could decide
that write is a library function which they do not wish to
change the type of. This results in an explicit type cast
away from the new type. As there are no more production
rules to take, the algorithm terminates successfully.

[[ft(temperature)]] int
threshold([[ft(temperature)]] int T) {

[[ft(factor)]] int F = 3;
return F * T;

}
[[ft(temperature)]] int T2 =

threshold(SensorTemp);
write(T2);

fn threshold

param T var F

init

3

return

*

F T

var ST var T2

init

call threshold

arg = ST

If an irrecoverable error is discovered, the algorithm termi-
nates with the error. For example, a function containing
two return statements that return values of different fic-
tive types would classify as an irrecoverable error.

Transition to strong type
After the successful propagation, the tool generates strong
types for the fictive types used and rewrites the code to
use the new types. Developers are then encouraged to add
invariants, additional semantics, or apply existing refac-
toring operations on these types. The rewritten variables
explicitly wrap and unwrap at interface boundaries [3].

class temperature { /* . . . */ };
class factor { /* . . . */ };
temperature operator *(factor, temperature);
temperature threshold(temperature T) {

factor F{3}; // Explicit cast from int literal.
return F * T;

}
temperature SensorTemp = /* . . . */;
temperature T2 = threshold(SensorTemp);
print(static_cast<int>(T2));

The project is now enhanced with increased type safety.
Importantly, future development efforts that would violate
the interface discovered for this type will result in an error
message from any standard-compliant compiler.

some_function(T2 + 1.5);

test.cpp:11:18: error: invalid operands to binary
'+' expression ('temperature' and 'double')

some_function(T2 + 1.5);
~~ ^ ~~~
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